Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Áö¸£ÄÚ´Ï¾Æ¿Í ·¹Áø³ª³ë¼¼¶ó¹Í ÀÓÇöõÆ® Áö´ëÁÖÀÇ µÎ²²¿¡ µû¸¥ ¿­¼øȯ ÈÄ ÆÄÀýÀúÇ×

Fracture resistance of zirconia and resin nano ceramic implant abutments according to thickness after thermocycling

´ëÇÑÄ¡°úº¸Ã¶ÇÐȸÁö 2017³â 55±Ç 2È£ p.144 ~ 150
ÀÌÁ¤¿ø, Â÷Çö¼®, ÀÌÁÖÈñ,
¼Ò¼Ó »ó¼¼Á¤º¸
ÀÌÁ¤¿ø ( Lee Jung-Won ) - ¿ï»ê´ëÇб³ ÀÇ°ú´ëÇÐ ¼­¿ï¾Æ»êº´¿ø Ä¡°úº¸Ã¶°ú
Â÷Çö¼® ( Cha Hyun-Suk ) - ¿ï»ê´ëÇб³ ÀÇ°ú´ëÇÐ ¼­¿ï¾Æ»êº´¿ø Ä¡°úº¸Ã¶°ú
ÀÌÁÖÈñ ( Lee Joo-Hee ) - ¿ï»ê´ëÇб³ ÀÇ°ú´ëÇÐ ¼­¿ï¾Æ»êº´¿ø Ä¡°úº¸Ã¶°ú

Abstract

¸ñÀû: ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ½É¹ÌÀûÀÎ ÀÓÇöõÆ® Áö´ëÁÖÀÇ Á¾·ù¿Í µÎ²²¿¡ µû¸¥ ÆÄÀý °­µµ¸¦ ÃøÁ¤ÇÏ¿© ±¸°­ ³» ÀúÀ۾п¡ °ßµð´Â ÃÖ¼ÒÇÑÀÇ µÎ²²¸¦ Æò°¡Çϱâ À§ÇÔÀÌ´Ù.

Àç·á ¹× ¹æ¹ý: ´ëÁ¶±ºÀ¸·Î 0.5 mm µÎ²²ÀÇ Æ¼Å¸´½ ÀÓÇöõÆ® Áö´ëÁÖ¸¦(Ti-0.5), ½ÇÇ豺À¸·Î Áö¸£ÄÚ´Ï¾Æ ÀÓÇöõÆ®¿Í ·¹Áø ³ª³ë ¼¼¶ó¹Í Áö´ëÁÖ¸¦ »ç¿ëÇÏ¿© °¢°¢ 0.5 mm, 0.8 mm, 1.0 mm µÎ²²·Î °¢ ±×·ì¿¡ 10°³¾¿ ÃÑ 70°³ÀÇ ½ÃÆíÀ» Á¦ÀÛÇÏ¿´´Ù(±×·ìZir-0.5, Zir-0.8, Zir-1.0, RNC-0.5, RNC-0.8, RNC-1.0). ¸ðµç ½ÃÆíÀº ÆÄÀý ½ÇÇè ÀÌÀü¿¡ ¿­¼øȯÀ» ½ÃÇàÇÏ¿© ±¸°­ ³»¿¡¼­ÀÇ »ç¿ëÀ» ÀçÇöÇÑ ÈÄ, universal testing machineÀ» ÀÌ¿ëÇÏ¿© °¢ ½ÃÆíÀÇ ÆÄÀý °­µµ¸¦ ÃøÁ¤ÇÏ¿© Æò±Õ°ªÀ» ÃøÁ¤ÇÏ¿´´Ù. ±×·ìµéÀÇ Æò±Õ ÆÄÀý °ªÀ» ÃøÁ¤ÇÏ¿´À¸¸ç ÀÌ¿øºÐ»êºÐ¼®À» ÀÌ¿ëÇÏ¿© Åë°èÇÐÀûÀ¸·Î ºÐ¼®ÇÏ¿´´Ù.

°á°ú: Zir-1.0±ºÀÌ °¡Àå ³ôÀº ÆÄÀý °­µµ 2,476.3 ¡¾ 342.0 N¸¦ º¸¿´À¸¸ç µÚ¸¦ À̾î Zir-0.8 (1,518 ¡¾ 347.9 N), Ti-0.5 (1,041.8 ¡¾ 237.2 N), Zir-0.5 (631.4 ¡¾ 149.0 N), ÀÇ ¼øÀ̾ú´Ù. RNC ±×·ìÀÇ °æ¿ì¿¡ Ti¿Í Zir ±×·ì¿¡ ºñ±³ÇÏ¿© À¯ÀÇÇÏ°Ô ³·Àº ÆÄÀý °­µµ°ªÀ» ³ªÅ¸³»¾úÀ¸¸ç(RNC-1.0 427.5 ¡¾ 72.1, RNC-0.8 297.9 ¡¾ 41.2), ¸ðµç ½ÇÇ豺¿¡¼­ Áö´ëÁÖ µÎ²²°¡ °¨¼ÒÇÒ¼ö·Ï ÆÄÀý °­µµ °ªµµ À¯ÀÇÇÏ°Ô °¨¼ÒÇß´Ù(P < .01). RNC-0.5 (127.4 ¡¾ 35.3 N) ±×·ìÀº ´Ù¸¥ ¸ðµç ±º¿¡ ºñÇØ À¯ÀÇÇÏ°Ô ³·Àº °ªÀ» º¸¿´´Ù(P < .05).

°á·Ð: À̹ø ½ÇÇè¿¡¼­ »ç¿ëµÈ ¸ðµç µÎ²²ÀÇ Áö¸£ÄÚ´Ï¾Æ Áö´ëÁÖ´Â ÀüÄ¡ºÎ¿Í ±¸Ä¡ºÎÀÇ ±³ÇÕ¾ÐÀ» °ßµô ¼ö ÀÖ´Â Á¤µµÀÇ ÆÄÀý °­µµ¸¦ º¸¿©ÁÖ¾ú´Ù. ·¹Áø ³ª³ë ¼¼¶ó¹Í Áö´ëÁÖÀÇ °æ¿ì 0.8 mm µÎ²² À̻󿡼­ ÀüÄ¡ºÎÀÇ ±³ÇÕ¾ÐÀ» °ßµô ¼ö ÀÖ´Â °¡´É¼ºÀ» º¸¿©ÁÖ¾ú´Ù.

PURPOSE: The aim of this in vitro study is to investigate load bearing capacity of esthetic abutments according to the type of material and wall thickness.

MATERIALS AND METHODS: 70 specimens equally divided into seven groups according to their abutment wall thicknesses. The abutments prepared with titanium 0.5 mm wall thickness were used as a control group (Ti-0.5), whereas zirconia abutments and resin nano ceramic abutments with wall thickness 0.5 mm, 0.8 mm and 1.0 mm were prepared as test groups (Zir-0.5, Zir-0.8, Zir-1.0 and RNC-0.5, RNC-0.8, RNC-1.0). All specimens were tested in a universal testing machine to evaluate their resistance to fracture and all of them underwent thermo-cycling before loading test. Mean fracture values of the groups were measured and statistical analyses were made using two-way ANOVA.

RESULTS: Zir-1.0 showed the highest mean strength (2,476.3 ¡¾ 342.0 N) and Zir-0.8 (1,518 ¡¾ 347.9 N), Ti-0.5 (1,041.8 ¡¾ 237.2 N), Zir-0.5 (631.4 ¡¾ 149.0 N) were followed. The strengths of RNC groups were significantly lower compared to other two materials (RNC-1.0 427.5 ¡¾ 72.1, RNC-0.8 297.9 ¡¾ 41.2) and the strengths of all the test groups decreased as the thickness decreases (P < .01). RNC-0.5 (127.4 ¡¾ 35.3 N) abutments were weaker than all other groups (P < .05).

CONCLUSION: All tested zirconia abutments have the potential to withstand the physiologic occlusal forces in anterior and posterior regions. In resin nano ceramic abutments, wall thickness more than 0.8 mm showed the possibility of withstanding the occlusal forces in anterior region.

Å°¿öµå

³ª³ë¼¼¶ó¹Í; Áö´ëÁÖ; ÈûÀúÇ×´É; Áö¸£ÄڴϾÆ; ÆÄÀý
Nano ceramics; Dental abutment; Load-bearing capacity; Zirconia; Fracture

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed